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Gridpoint Statistical Interpolation (GSI) Scheme 

 

1. Background: Numerical Weather Prediction (NWP) is an initial value problem. A good 

NWP forecast requires an Analysis or Initial Conditions of high quality. The more accurate 

the estimation of the initial conditions, the better is the quality of forecasts. High-quality 

analysis requires a good Data Assimilation System, good observations to assimilate and a 

good NWP model providing the first guess or background information. Data Assimilation is 

the process that combines the observations of the atmospheric conditions with a short-range 

(usually 6 hours) model forecast (termed as first guess or background) to produce the best 

estimate of the current state of the atmosphere (Analysis) on the regular model grid. The real-

world observations enter the numerical weather model’s forecast cycles through data 

assimilation and safeguard against model error growth. The first guess contains background 

information retained by the model from previous analyses. It has footprints of past weather 

conditions and provides uniform information coverage over the assimilation domain. 

Observational data are considered over a range of time, called a time window, usually 

centred on the analysis time. 

 

Data Assimilation methods can be based on an empirical, constant statistical or adaptive 

statistical approach. Successive Correction Method, Nudging and, Physical Initialization and 

Latent Heat Nudging are types of empirical methods. The Adaptive Statistical approach 

comprises various forms of Kalman Filter (viz. Extended Kalman Filter, Ensemble Kalman 

Filter, etc.). The constant statistical method includes Optimal Interpolation (OI), 3-

dimensional variational (3DVar) and 4-dimensional variational (4DVar) data assimilation 

techniques. At NCEP (National Centers for Environmental Prediction), USA, the first 

analysis system to be used was Optimal Interpolation. In the early ’90s, NCEP 

operationalized its first variational analysis system called Spectral Statistical Interpolation 

(SSI) technique. It was based on the 3DVar approach. 
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Although it was a significant improvement over OI, it faced few lacunae. The spectral 

coefficients used in the spectral model are analyzed directly using the same basic equations 

as statistical (optimal) interpolation in the SSI analysis system. The analysis variables in SSI 

are spectral coefficients instead of grid point values. It uses all observations at once to solve a 

single global problem (Parrish and Derber 1992). In this formulation, the background error 

covariances are computed assuming that uncorrelated errors in spectral space lead to 

homogeneous, isotropic statistics in grid space. This is a significant weakness of the system. 

Thus, a new formulation needs to be developed to allow the variance and correlation length 

scale to vary nontrivially in all space directions. Also, in SSI, the analysis being formulated 

in spectral space made it difficult for atmospheric systems on a regional scale.  

 

2. GSI: GSI analysis scheme is the evolutionary combination of the global SSI analysis system 

and the regional ETA 3D-VAR. It replaced spectral definition for background errors with 

grid point (physical space) version based on recursive filters. The 3D-Var version of this 

global analysis system in physical space is as effective as 3D-Var in spectral space with 

latitude-dependent structure functions and other error statistics. Diagonal background error 

covariance in spectral space (in SSI) allows little control over the spatial variation of the 

error statistics as the structure-function is limited to being geographically homogeneous and 

isotropic about its centre (Parrish and Derber 1992; Courtier et al. 1998). GSI allows greater 

flexibility in terms of inhomogeneity and anisotropy for background error statistics (Wu et al. 

2002). Thus significant improvement of GSI over the SSI analysis scheme is its latitude-

dependent structure functions and has more appropriate background errors in the tropics. The 

background error covariances are isotropic and homogenous in the zonal direction. Unlike 

SSI, the GSI system can easily be applied to the regional domain. 

 

GSI system over the global domain is generally run in 6-hour intermittent assimilation 

cycles. A fresh analysis, i.e. a new estimate of the atmospheric state, is generated every 6-

hour and is used as an initial condition for generating a 9-hour forecast. The background or 

the first guess used for the assimilation process is the 6-hour forecast from the previous 

cycle. The 9-hour forecast produced every cycle is necessary to interpolate all the asynoptic 
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observations available within the assimilation time window (in general ± 3hour around the 

analysis time).    

 

GSI Analysis scheme was initially built as a 3D-Var system. In recent years, it has been 

under continuous development and has evolved into an Ensemble-Variational Hybrid system. 

Over the course of development, multiple options of the GSI analysis scheme are available. It 

can be used as 3DEnVar, Hybrid 3DEnVar, 4DEnVar, Hybrid 4DEnVar, or 4DVar (when 

coupled with an adjoint model supported by GSI) system. For the present course, we will 

concentrate on the 3D-Var configuration. In a variational assimilation system, the analysis is 

computed by minimizing a cost function. In the 3D-Var approach, one defines a cost function 

proportional to the square of the distance between the analysis and both the background and 

the observations (Sasaki 1970; Kalnay 2003). The cost function is minimized directly to 

obtain the analysis. In 3D-Var, the cost function can be formulated as: 

 

𝐽௩௔௥ሺ𝑥ሻ ൌ  𝐽௕ ൅ 𝐽௢ ൅ 𝐽௖    (1) 

 

where, 

𝐽௩௔௥ ⇒ The cost function 

𝐽௕  ⇒  Fit to background: 
ଵ

ଶ
ሺ𝑥 െ 𝑥௕ሻ் 𝐵ିଵ ሺ𝑥 െ 𝑥௕ሻ 

𝐽௢  ⇒  Fit to observation: 
ଵ

ଶ
൫𝑦 െ 𝐻ሺ𝑥ሻ൯

்
𝑅ିଵ ൫𝑦 െ 𝐻ሺ𝑥ሻ൯ 

𝐽௖  ⇒ Constraint terms include the penalties for negative humidity constraint, excess moisture 

constraint, negative visibility constraint, negative gust constraint, negative PBL constraint, 

and conservation of global dry mass. 

 

Equation-1 can be represented as: 

𝐽௩௔௥ሺ𝑥ሻ ൌ  ଵ

ଶ
ሺ𝑥 െ 𝑥௕ሻ் 𝐵ିଵ ሺ𝑥 െ 𝑥௕ሻ ൅ ଵ

ଶ
൫𝑦 െ 𝐻ሺ𝑥ሻ൯

்
𝑅ିଵ ൫𝑦 െ 𝐻ሺ𝑥ሻ൯ ൅  𝐽௖   (2) 

 

where, 

𝑥 ⇒  analysis/control variable 

𝑥௕ ⇒ background vector 
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𝐵 ⇒ background error covariance matrix 

𝐻 ⇒ observation operator 

𝑅 ⇒ observation error covariance matrix (instrument error + representative error) 

𝑦 ⇒ observation vector 

 

The analysis/control variables in GSI upon which the background errors are computed 

includes: 

 Streamfunction (ψ) 

 Unbalanced velocity potential (χ) 

 Unbalanced temperature (T) 

 Unbalanced surface pressure (Ps) 

 Pseudo relative humidity or normalized relative humidity 

 Satellite bias correction coefficients 

 Ozone (global GSI only) 

 Cloud condensate mixing ratio 

 Trace gases / aerosols / chemistry (for chemical DA) 

 Gust and visibility (for RTMA) 

 

In the 3D-Var analysis system, the observations within the assimilation time window are all 

considered valid at the same time. The minimum or optimal value of the cost function is 

obtained for 𝑥 ൌ  𝑥௔ ሺ𝑡ℎ𝑒 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠ሻ by minimizing equation-2: 

 

 ∇𝐽௩௔௥ሺ𝑥ሻ ൌ 0  (3) 

 

A detailed explanation of the variational equation is provided in the lecture notes on 

‘Introduction to cost function for 3-DVAR as well as for 4- DVAR data assimilation and its 

minimization, giving rise to analyzed field’. 

 

Minimization of the cost function in GSI involves an outer and an inner iteration. The outer 

iteration covers the Quality Control of observation data and running of Non-linear 

Observation Forward Operator. During inner iteration, GSI performs the Minimization 
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procedure, Variational Quality Control, runs Simple Forward Operator, and provides a 

solution to start the next outer iteration.  

 

In most cases for running GSI, three types of input data are required viz; background / first 

guess file, observations and fixed files. The fixed files are comprised of CRTM (Community 

Radiative Transfer Model) coefficient files (used for satellite radiance data assimilation), 

configuration files, statistic files, and bias correction files. GSI, when run with 

ensemble/hybrid option, will, in addition, require ensemble forecasts. The GSI system, when 

used for the global domain, constitutes the following steps: 

 

i. Observation Processing: Before ingesting into the model, the observations require pre-

processing. They are decoded, grouped and encoded into single BUFR ((Binary 

Universal Form for the Representation of Meteorological data) files containing 

observations that fall within the assimilation time window. The synoptic observations 

generally constitute a single file. In contrast, the asynoptic or non-conventional data 

(especially the observations from satellites) are used as separate files based on their type 

and sensors used for recording them. Observation processing is being done in real to 

near-real-time at operational centres. For archived runs, the observation processing is 

already completed, and the observation files are available to be directly used for 

assimilation. 

 

Observations operational in the Data Assimilation System at National Center for Medium 

Range Weather Forecasting (NCMRWF) is summarized in table-1. The observations 

have quality markers assigned to them by the data processing centres. The initial filtering 

of the observations data is based on the associated quality markers. In addition, before the 

minimization procedure, the observations are passed through several quality control 

checks to ensure good data assimilation. Based on the analysis resolution, high-density 

data are thinned or superobbed. Thinning also alleviates observation error correlation and 

error of representativeness. 
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ii. Storm Relocation: In the presence of cyclonic systems, this step is run to adjust the first 

guess. Storm relocation adjusts the cyclonic system in the first guess before assimilation, 

close to observed storm intensity, location and structure, and ensures better-analyzed 

storm fields. 

 

iii. Prep: This step prepares the data to be used in the analysis system. 

 
iv. Analysis: This step runs the data assimilation and generates analysis/initial conditions for 

the subsequent forecast. 

 
v. Forecast: Using the analysis fields generated from the previous step, the forecast model 

runs up to the desired number of hours (based on the assimilation cycle) and produces the 

first guess/background for the next assimilation cycle. 

 
vi. Post: This step converts the analysis and forecast fields generated from the previous step 

into WMO (World Meteorological Organization) GRIB (Gridded Binary) format. The 

resulting post-processed files can be used for diagnostic purposes and also can be used by 

other NWP model systems. 

 

The community version of the GSI system is being maintained and supported by the 

Developmental Testbed Center (DTC): 

https://dtcenter.org/community-code/gridpoint-statistical-interpolation-gsi  

The GSI system in the form of community model code is freely available in the public 

domain for use by the research community: 

https://dtcenter.org/community-code/gridpoint-statistical-interpolation-gsi/download  

DTC currently focuses on testing and evaluating the GSI system on a regional scale coupled 

with the WRF (Weather Research and Forecasting) model system. 
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Concept of Observation Operator 

 

Observations used for data assimilation are from locations different from the analysis grid 

points. Assimilation of these data requires horizontal and vertical interpolation of the first 

guess values from model space to observation space. It is more straightforward when the 

observations are the direct model variables (i.e., temperature, wind, moisture and, surface 

pressure). Complexity arises when dealing with observations which are measurements 

influenced by the direct model variables. These observations, viz; radiances, bending angle, 

refractivities, reflectivities, doppler shifts, horizontal line of sight winds, zenith total delays, 

etc., are measured by remote sensing instruments. For assimilating such data, an operator is 

required. Using the values from the model first guess, the operator will simulate the first 

guess of the observation or can be termed as the model equivalent of the observation. These 

operators in NWP, known as ‘Observation Operator’ (denoted by ‘H’ in the previous 

section), provides the link between the NWP model variables and the observations (Lorenc 

1986; Pailleux 1990). The simulation of the model equivalent of observations by the 

observation operator allows the correct comparison of forecast variables with the 

observations for assimilation.  

 

The operator ‘H’ shown in the previous section represents the ensemble of all the observation 

operators, which will transform the control variable (x) into a quantity at the observation 

location equivalent to the parameter (y) measured by the instruments. The actual and 

simulated parameters are then compared, and their difference ൫𝑦 െ 𝐻ሺ𝑥ሻ൯ known as the 

‘observational increments’ or innovations, are computed. The model variables are 

transformed as per the physical laws. For example, the Radiance Operator uses vertical 

profiles of temperature and moisture fields from the model first guess and computes the first 

guess values equivalent to observed satellite radiances. The observation operator also 

performs spatial interpolations (or transformation from spectral to physical space) from the 

model values to the observation location.  
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The observation operator depends on the level of prepossessing (Huang et al. 2002). For 

example, to assimilate the refractivity profiles, they can be transformed into profiles of 

temperature versus pressure. Instead of incorporating the refractivity profiles, these 

temperatures vs pressure profiles could also be assimilated. But it has been proven by 

multiple studies that it is more beneficial to assimilate the observations directly in as raw 

form as possible.  

 

Given below are examples of two observation operators (Huang et al. 2002): 

For zenith total delays (ZTD, which are measured by ground-based Global Positioning 

System (GPS) receivers), the observation operator includes 

 

𝑍𝑇𝐷 ൌ  𝑝௔ 𝑓ሺ𝜃, ℎሻ ൅ 
1

𝑔ሺ𝜃ሻ
෍ 𝑞௜ ቀ𝑝௜ାଵ

ଶൗ െ  𝑝௜ିଵ
ଶൗ ቁ

ே

௜ୀଵ
 

 

where, 

𝑝௔  ⇒ the pressure at the GPS antenna 

𝑝௜േଵ
ଶൗ  ⇒ the pressures at the model half levels 

𝑞 ⇒ specific humidity 

𝑔 ⇒ the gravitational acceleration 

𝜃 ⇒ the latitude 

ℎ ⇒ the geometric height 

𝑓 ⇒ a function depending on the geographical location of the site. 

 



Page 10 of 12 
 

For refractivity, the observation operator includes the part 

 

𝑁 ൌ  
𝑝
𝑇

 
1

1 ൅ 𝑞ሺ1 𝜖⁄ െ 1ሻ
൭𝑘ଵ ൅  

𝑞
𝜖

 ൬𝑘ଶ െ  𝑘ଵ 𝜖⁄ ൅  
𝑘ଷ

𝑇
൰൱ 

 

where, 

𝑝 ⇒ pressure at the observation location 

𝑇 ⇒ temperature at the observation location 

𝑞 ⇒ humidity at the observation location 

𝑘ଵ,ଶ,ଷ & 𝜖 ⇒ constants 

 

The observation operator includes a complicated integral for radiance data depending on the 

radiative transfer up through the atmosphere. 
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Table 1: Observations operational in Data Assimilation system at National Center for Medium 
Range Weather Forecasting (NCMRWF) 

Conventional 
Observations 

Satellite Observations 

 Satellite Winds (AMV) Scatterometer 
Winds 

Satellite Radiances GPSRO 

 GEO LEO  GEO LEO LEO 

    IR IR (HyS) MW Bending 
Angle 

Surface: 
Land SYNOP 
(TAC & BUFR) 
 

SHIP 
(TAC & BUFR) 
 
BUOY, 

TC  BOGUS 

 

Profiles: PILOT, 
TEMP (RS/RW- 
Both TAC & 
BUFR) 

 

Wind Profiler, 
Drop Sonde 

 
DWR VAD 
Winds 
 
Aircraft: 
AMDAR, 
AIREP 

INSAT-3D NOAA-15  ASCAT 
(MetOp-A) 

INSAT-3D  
Imager 

IASI 
(MetOp-A) 

AMSU-A 
(MetOp-A) 

COSMIC-2 

Meteosat-8 NOAA-18 ASCAT 
(MetOp-B) 

SEVIRI 
(Meteosat-8) 

IASI 
(MetOp-B) 

AMSU-A 
(MetOp-B) 

METOP A, 
B & C 

Meteosat-11 NOAA-19 Scatsat SEVIRI 
(Meteosat-11) 

AIRS 
(AQUA) 

AMSU-A 
(NOAA-18) 

TanDEM-X 

HIMAWAR
I 

MetOp-A Windsat 
(Coriolis) 

AHI 
(HIMAWARI-8) 

CrIS 
(SNPP) 

AMSU-A 
(NOAA-19) 

TerraSAR-X 

GOES-16 MetOp-B  INSAT-3D/3DR 
Sounder 

CrIS 
(NOAA-20) 

MHS 
(MetOp-A) 

KOMPSAT-
5 

GOES-17 AQUA    MHS 
(MetOp-B) 

FY-3C 

 TERRA    MHS 
(NOAA-19) 

 

 SNPP    MT-SAPHIR  

 NOAA-20    ATMS 
(SNPP) 

 

     SSMIS 
(DMSP-F17) 

 

     AMSR-2 
(GCOM-W1) 

 

     FY-3C  

     GMI (GPM)  

     ATMS 
(NOAA-20) 

 


